On the parametrization of Schur functions of degree \(n - 1 \) with \(n \) fixed interpolating conditions

A. Gombani
LADSEB-CNR
Corso Stati Uniti 4
35127 Padova, Italy
e-mail: gombani@ladseb.pd.cnr.it

and

György Michaletzky
Eötvös Loránd University
H-1117 Pazmany Peter sány. 1/C
Computer and Automation Institute of HAS
H-1111 Kende u. 13-17
Budapest, Hungary
e-mail: michgy@ludens.elte.hu

Abstract

We investigate here a parametrization of Schur functions of degree \(n - 1 \) with given \(n \) interpolating conditions. The results are presented for scalar case.

1 Introduction

We investigate here the problem of parametrizing the set of Schur function of degree \(n - 1 \) which satisfies a set of \(n \) given interpolating conditions. The results are based on a refinement of [5] where the general degree \(n \) case is treated. General results for the degree \(n \) case are due to Kimura and Georgiou (see [4], [3]) and more recently to Byrnes, Georgiou and Lindquist (see [2] and reference therein). We derive here, similarly to [5], a parametrization for scalar Schur functions of degree \(n - 1 \) which can be extended to positive real functions.

2 Preliminaries and notation

We shall denote by \(\mathbb{C}^+ \) the right half-plane, and by \(\mathcal{H}^2_+ \) the corresponding Hardy space of vector or matrix valued functions (the proper dimension will be understood from the context). Let \(F,G \) be \(p \times m \) matrix valued functions in \(\mathcal{H}^2_+ \). The space \(\mathcal{H}^2_+ \) is naturally endowed with the scalar product,

\[
<F,G> = \frac{1}{2\pi} \text{Tr} \int_{-\infty}^{\infty} F(iy)G(iy)^* \, dy,
\]

and we shall denote by \(|| \cdot ||_2 \) the associated norm. Note that if \(M \) is a complex matrix, \(\text{Tr} \) stands for its trace, \(M^T \) for its transpose and \(M^* \) for its transpose conjugate. Similarly, we define \(\mathcal{H}^\infty_+ \) to be Hardy space of essentially bounded functions analytic on the right half plane. A \(p \times m \) matrix valued function \(Q \in \mathcal{H}^\infty_+ \) is called a Schur function if \(Q(\omega)Q(\omega)^* \leq I_p \) for (almost all) \(\omega \in \mathbb{R} \); it is called wide inner if \(p < m \) and \(Q(\omega)^*Q(\omega) = I_p \) for (almost all) \(\omega \in \mathbb{R} \). The set of Schur functions of degree \(n \) and dimension \(p \times m \) with constant term \(D \) is denoted by \(\mathcal{S}^{n,m}_+(D) \). Similarly, \(\mathcal{Q}^{n,m}_+(D) \) will denote the subset of functions in \(\mathcal{S}^{n,m}_+(D) \) which are inner.

We assume that we are given a set of interpolation points \(s_1,\ldots,s_n \) in \(\mathbb{C}^+ \) and interpolating conditions

\[
U = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \quad V = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}
\]

with \(u_i \), \(v_i \) row vectors in \(\mathbb{C}^m \) and \(\mathbb{C}^p \), respectively, \(\|u_i\| = 1 \) and \(\|v_i\| \leq 1 \) for \(i = 1,\ldots,n \) and we want to find the solutions \(Q \) to the problem

\[
u_i Q(s_i)^* = v_i, \quad i = 1,\ldots,n
\]

which are Schur functions of degree \(n - 1 \).

We will consider the following more general problem:

Problem 1 Given a \(\mathcal{A} \) stable and interpolating directions \(u_1,\ldots,u_n \) and conditions \(v_1,\ldots,v_n \) and a constant matrix \(D \) parametrize all functions \(Q \) of degree \(n - 1 \) satisfying

\[
\int_{\Gamma} (Q(s)U^* - V^*)(sI + \mathcal{A}^*)^{-1} ds = 0
\]

where \(\Gamma \) is a closed curve around \(\sigma(-\mathcal{A}^*) \).

The set of Schur functions of degree \(n - 1 \) satisfying (4), endowed with the induced \(\mathcal{H}^\infty_+ \) topology will be denoted by \(\mathcal{S}_{n-1}(\mathcal{A},U,V,D) \).

3 Main results

Given some data \(\mathcal{A},U,W \) we define the Pick matrix \(\mathcal{R} \) to be the solution to

\[
\mathcal{A} \mathcal{P} + \mathcal{R} \mathcal{A}^* + UU^* - WW^* = 0
\]

We start with the following simple
Lemma 3.1 Let A, U, W, D be given and suppose $Q = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$. Then Q is an interpolating function, i.e., it satisfies (4) if and only if there exists Y:

\[
\begin{aligned}
AY + YA^* + BU^* &= 0 \\
CY &= DU^* - W^*
\end{aligned}
\]

Lemma 3.2 Let \mathcal{A}, U, V and $\tilde{V}_0^T = [\tilde{v}_1, \tilde{v}_2, ..., \tilde{v}_{n-1}, 0]^T$ be given such that, setting $W = [V, \tilde{V}_0]$, the equation (7) has a positive definite solution. Then there are at most two values \tilde{v}_n such that, setting $\tilde{V}^T = [\tilde{v}_1, \tilde{v}_2, ..., \tilde{v}_{n-1}, \tilde{v}_n]^T$ and $W = [V, \tilde{V}]$, the solution \mathcal{R} to (5) is singular. If all the coefficients are real, then also these values are real.

The above is a parametrization of all inner completions of Schur interpolants; since each interpolants has many completions, corresponding to the solutions to BRL equations, this result does not yield a parametrization of $S_n(\mathcal{A}, U, V, D)$; the parametrization is simply achieved by choosing one such completion, e.g. the maximum-phase one. The result is quite straightforward and is omitted for lack of space.

References

